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1 Motivations

Previously, most of the models of the stock process we have encountered are contin-

uous, i.e the stock price is not supposed to have jumps. Very quickly we see this

assumption is restrictive: when the stock pays dividend, the stock price has a down-

ward jump corresponding to the amount of divident payout. However, the dividend

payment can be covered within the continuous framework without introducing any

new ideas, essentially because the dividend payment times are deterministic.

Dividend payments are not the only phenomenons that cause the stock price to

have jumps, obviously. In reality, we quickly observe many instances where stock price

jumps, and the most important characteristic of these jumps is that they happen at

random times. Being able to model stock prices that incorporate jumps at random

(or more precisly, stopping times) and learning how to price financial products based

on these models are the main focus of this Chapter.

2 Some review materials

Reading material: Dan Ocone’s Lecture note 1 sections I and II

3 The most basic model of jumping processes: Pois-

son process

Reading material: Shreve Section 11.2.
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3.1 Heuristics about Poisson process

We think of Poisson process as followed: suppose that we have an alarm clock that

will ring after a random time τ , where τ is exponentially distributed with some mean
1
λ
. We keep account of the value of the Poisson process at any time t by the notation

N(t). At time 0, we set the alarm clock and set N(0) = 0. When the alarm rings, we

increase the value of N by 1, that is we set N(τ) = 1 and repeat the whole process

(i.e. we reset the alarm clock and increase the value of N by 1 the next time the

clock rings). The resulting process N(t) is then a Poisson process with rate λ. We

observe that the larger λ is, the clock would be likely to ring sooner and the more

jumps would likely happen in a given time interval [0,T]. It is also clear that N(t) is

constant in between the ”ring” times.

3.2 Formal mathematical definition

a. τ (as a R.V.) is said to be exponentially distributed with rate λ if it has the density

f(t) = λe−λt1(t≥0).

It follows that E(τ) = 1
λ

and V ar(τ) = 1
λ2

. An important property of exponential

random variable is the memoryless property:

P(τ > t+ s|τ > s) = P(τ > t).

b. Let τi, i = 1, 2, ... be a sequence of i.i.d. Exponential(λ). Let Sk :=
∑k

i=1 τi.

The Poisson process N(t) with rate λ is defined as:

N(t) =
n∑
i=1

1(t≥Si).

τi is called the inter-arrival time. It is the wait time from the (i − 1)th jump to

the ith jump. Si is called the arrival time. It is the time of the ith jump.

3.3 Important basic properties

a. Distribution: N(t) is has distribution Poisson(λt), that is

P(N(t) = k) =
e−λt(λt)k

k!
.
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Proof. Let Sn =
∑n

i=1 τi be the arrival time, then

P(N(t) = k) = P(Sk+1 > t, Sk ≤ t)

= P(Sk+1 > t)− P(Sk+1 > t, Sk > t) = P(Sk+1 > t)− P(Sk > t).

From Shreve’s Lemma 11.2.1, Sn has Gamma(λ, n) distribution. That is, it has

the density:

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0.

It is a straight forward matter of integration now to verify that

P(Sk+1 > t)− P(Sk > t) =
e−λt(λt)k

k!
.

The integration can be tedious, however. Another way to verify it is as followed:

Denote f(t) := P(Sk+1 > t) − P(Sk > t) and note that f(t) satisfies the following

ODE:

f ′(t) = gk(t)− gk+1(t) =
(λt)k−1

(k − 1)!
λe−λt − (λt)k

k!
λe−λt

f(0) = 0.

It is clear that f(t) = e−λt(λt)k

k!
is the unique solution to the above ODE. The

verification is complete.

b. N(t) has independent increment. That is if we denote Ft to be the filtration

generated by N(s), 0 ≤ s ≤ t then for all t ≤ t1 < t2, N(t2) − N(t1) is independent

of Ft.
Heuristic reason: Let 0 ≤ s < t. Clearly N(t)−N(s) counts the number of jumps

starting from time s. Given all the information up to time s, what is the distribution

of the first jump time after s? That is, we want to compute P(SN(s)+1 ≥ t|Fs), where

Sn is the arrival time as defined in Shreve (11.2.4). Note that since N(s) represents

the number of jumps up to time s, SN(s)+1 is exactly the time of the first jump after

time s.

But this is the same as computing P(τN(s)+1 ≥ t − SN(s)|τN(s)+1 ≥ s − SN(s)).

Note that SN(s) here represents the time of the last jump before time s, and τN(s)+1

is the wait time between the last jump before time s and the first jump after time s.

So P(τN(s)+1 ≥ t − SN(s)|τN(s)+1 ≥ s − SN(s)) asks for the probability that we have

to wait until after time t for the first jump after time s, given that we know we have
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waited up until time s since the last jump before s, which has the same content as

P(SN(s)+1 ≥ t|Fs).
Note also that P(τN(s)+1 ≥ t−SN(s)|τN(s)+1 ≥ s−SN(s)) = P(τN(s)+1 ≥ t− s+ s−

SN(s)|τN(s)+1 ≥ s− SN(s)). Since Fs is given, N(s) should be looked at as a constant

here. But from the memoryless property of τN(s)+1, we get

P(τN(s)+1 ≥ t− s+ s− τN(s)|τN(s)+1 ≥ s− τN(s)) = P(τN(s)+1 ≥ t− s).

That is, the first jump time after s can be looked at as an exponential clock starts at

time s, hence independent of the past information. Using the independence of inter-

arrival times, it is clear now that the increments of N(t) after time s is independent

of the information up to time s.

c. N(t) has stationary increment. More specifically, N(t)−N(s) has distribution

Possion(λ(t− s)).
Heuristic reason: It follows from the same arguments of part b.

4 Generalizations of Poisson process

4.1 Compound Poisson process

Reading material: Shreve 11.3, Ocone’s Lecture note 1 section V.D The Poisson

process we introduced has the satisfactory property that it jumps at random times.

However, each of the jump is by definition of length 1, which is rather restrictive. It

is desirable in terms of being realistic to have random jumps in our model. To that

end, we proceed as followed.

LetN(t) be a Poisson process with rate λ and let Y0 = 0, Yi, i = 1, 2, ... be i.i.d.(and

also independent of N(t)) with E(Yi) = µ. Define

Q(t) =

N(t)∑
i=0

Yi,

then Q(t) is called a compound Poisson process. Similar to a Poisson process, Q(t)

also has the basic properties of independent and stationary increments. We do not

know the specific distribution of Q(t)−Q(s) (it depends on the distribution of Yi’s ,

of course), but we do know that E(Q(t)−Q(s)) = µλ(t− s).
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4.2 Pure jump process

Poisson process and compound Poisson process are examples of pure jump processes.

See Ocone’s lecture note 1 section V.B for discussion.

4.3 Levy process

Reading material: Ocone’s lecture note 1 section V.A

So far the three processes that we have encountered in Math Finance: Brown-

ian motion, Poisson and compound Poisson processes have these three properties in

common:

• Its value at time 0 is 0 : X(0) = 0.

• It has càdlàg path.

• It has stationary and independent increments.

A process X(t) is said to be a Levy process starting at 0 if it satisfies these three

properties (clearly if we change the first property to X(0) = x then we would get a

Levy process starting at x). Brownian motion is an example of a continuous Levy

process and Poisson process is an example of a pure jump Levy process. Indeed,

Brownian motion, compound Poisson process and pure jump process may be thought

as “building blocks” of a Levy process (See Levy-Ito decomposition on Wikipedia, for

example).

A rather simple but important property of Levy process is as followed: IfX1, X2, ...Xn

are independent Levy process then
∑n

i=1Xi is a Levy process. In particular, if we

consider S(t) = X(t) + Q(t), where X(t) is a Geometric Brownian motion with the

drift µ and volatility σ constant), Q(t) a compound Poisson process then S(t) is a

Levy process.

5 Martingale property

Reading material: Ocone’s lecture note 1, section V

In Math finance, we always require the discounted underlying to be a martingale,

so that no arbitrage can happen. As mentioned, the Levy process is intimately

connected to our stock models, so it’s natural to first study the martingale property

of Levy processes.
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5.1 Levy process

Let X(t) be a Levy process and F(t) its filtration. If E(X(1)) = µ then it can be

shown that E(X(t)) = µt. Similarly, if V ar(X(1)) = σ2 then it can be shown that

V ar(X(t)) = σ2t. Since X has independent increment, one can check that

Y (t) = X(t)− µt;
Z(t) = (X(t)− µt)2 − σ2t

are martingales with respect to F(t).

5.2 Brownian motion

Let W (t) be a Brownian motion and F(t) its filtration. Then W (t) and W 2(t) − t
are martingales w.r.t. F(t). More importantly, we have the following exponential

martingale associated with Brownian motion:

Z(t) = eσBt−
1
2
σ2t.

5.3 Poisson process

Let N(t) be a Poisson process and F(t) its filtration. Then N(t) − λt (called a

compensated Poisson process) and (N(t)− λt)2 − λt are martingales w.r.t. F(t). We

also have the following exponential martingale associated with N(t):

Z(t) = exp
(
iuN(t)− λt(eiu − 1)

)
,∀u ∈ R.

5.4 Compound Poisson process

Let Q(t) be a compound Poisson process and F(t) its filtration. Let σ2 = E(Yi). It

can be showed that V ar(Q(t)) = λt(σ2 +µ2). Then Q(t)−µλt (called a compensated

compound Poisson process) and (Q(t) − µλt)2 − λt(σ2 + µ2) is a martingale w.r.t.

F(t).

Let φ(u) := E(eiuY1) be the characteristic function of Yi. Then we also have the

following exponential martingale associated with Q(t):

Z(t) = exp
(
iuQ(t)− λt(φ(u)− 1)

)
,∀u ∈ R.
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6 Lebesgue-Stieltjes integral

6.1 Motivation

Now that we have introduced Poisson process, it is easy to see how to incorprate

jumps into the current Black-Scholes stock model. Specifically, letX(t) be a geometric

Brownian motion:

dXt = µXtdt+ σXtdWt,

and N(t) a Poisson process. Then defining the stock process as S(t) := X(t) +N(t)

already gives us a stock price that jumps at random times, and in between the jumps

behave as a geometric Brownian motion.

Let ∆t represent the number of shares of S(t) we hold at time t. As you might

remember from the previous material, we need to know how to evaluate the integral∫ t
0

∆sdSs, since it is connected with the value of a portfolio that has S as a component.

It is reasonable to expect that∫ t

0

∆sdSs =

∫ t

0

∆sdXs +

∫ t

0

∆sdNs,

and we already know how to evaluate
∫ t
0

∆sdXs from the chapter on Ito integral. It

remains to define
∫ t
0

∆sdNs.

For each event ω, the path Nt(ω) (as a function of t) belongs to a special class

of functions called the functions of bounded variation. For this reason,
∫ t
0

∆sdNs is

defined via the concept of Lebesgue-Stieltjes integral of classical analysis. It still

has some subtleties, however, mostly due to the facts that N(t) has jumps, so the

regularity (left or right continuity) of the integrand ∆t affects the value of the integral.

For this reason, we will review some basic aspects of the Lebesgue-Stieltjes integral

with respect to càdlàg integrator in the next section.

6.2 The Lebesgue-Stieltjes integral

Reading material: Dan Ocone’s Lecture note 1, sections III and IV.

Definition 6.1. We say a function G is of bounded variation if it can be written as

a difference of two increasing functions.

In this section, we will always consider a function G that is càdlàg and of bounded

variation defined on [0,∞).
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Definition 6.2. Let a > 0 and let H(t) = 1(0,a](t). Note that H is left continuous.

We define ∫
H(t)dG(t) := G(a)−G(0).

Definition 6.3. Let 0 = t0 < t1 < ... < tn < ∞. Since an integral is linear, for

H(t) =
∑n−1

i=1 ai1(ti,ti+1](t) we can also define∫
H(t)dG(t) :=

n−1∑
i=0

∫
1(ti,ti+1](t)dG(t) :=

n−1∑
i=0

ai(G(ti+1)−G(ti)).

Remark 6.4. Let t > 0, observe that 1[0,t](s)1(ti,ti+1](s) = 1(ti∧t,ti+1∧t](s) is also left

continuous. Therefore, we will also define∫ t

0

H(s)dG(s) :=

∫
1[0,t]H(s)dG(s).

In particular, for H(t) =
∑n−1

i=1 ai1(ti,ti+1](t),∫ t

0

H(s)dG(s) :=
n−1∑
i=0

ai(G(ti+1 ∧ t)−G(ti ∧ t)).

The above way to define the integral is of course for a very limited class of inte-

grands. There is an abstract way to define the Lebesgue-Stieltjes integral for a large

class of integrands, the so-called measurable functions, that is an extension of the

above definition. The precise statement is Theorem 1 in Dan Ocone’s note.

For our purpose, most of the time it suffices to know the Lebesgue - Stieltjes

integral for a specific form of G. We have three possible cases.

(i) G(t) =
∫ t
0
g(s)ds. Then∫ t

0

H(s)dG(s) =

∫ t

0

H(s)g(s)ds.

Let H(s) be a function that only has jump discontinuities. Then the left and

right limit of H(s) exists at every point. We define H(s−) to be a function that

has the same value as H(s) where H(s) is continuous and takes the left limit value

of H(s) where H has jump discontinuities. For example, if H(s) = 1(t≥a)(s) then

H(s−) = 1(t>a)(s). It can also be easily checked that in this case, H(s−) is left

continuous. We also have,∫ t

0

H(s−)dG(s) =

∫ t

0

H(s−)g(s)ds =

∫ t

0

H(s)g(s)ds =

∫ t

0

H(s)dG(s).

8



(ii) Let 0 = t1 < ... < tn < ∞ and G(t) =
∑n

i=1 ai1(t≥ti). Here G is a function of

pure jumps. Then∫ t

0

H(s)dG(s) =
∑
0<s≤t

H(s)∆G(s) :=
∑
i,ti≤t

H(ti)(G(ti)−G(ti−))

=
∑
i,i≤t

aiH(ti).

Remark 6.5. Note that Y (t) :=
∫ t
0
H(s)dG(s) in this case is also a pure jump func-

tion, in particular it is right continuous. Y (t) has the same jump times as G(t), with

jump size ∆Y (t) = H(t)∆G(t).

Remark 6.6. In this case,
∫ t
0
H(s−)dG(s) can be different from

∫ t
0
H(s)dG(s). For

example, let G(s) = 1(t≥a), a > 0. Then
∫ a
0
G(s)dG(s) = 1 while

∫ a
0
G(s−)dG(s) = 0.

(iii) G(t) =
∫ t
0
g(s)ds+ J(t), where J(t) is a function of pure jumps. Then∫ t

0

H(s)dG(s) :=

∫ t

0

H(s)g(s)ds+
∑
0<s≤t

H(s)∆J(s).

7 Stochastic integration w.r.t. semi-martingales

Reading material: Ocone’s lecture note 1, section VI, Shreve Section 11.4

7.1 Definition and examples

Let X(t) =
∫ t
0
γ(s)dWs + A(t), where W (t) is a Brownian motion with respect to a

filtration F(t), γ(t) ∈ F(t) be such that
∫ t
0
φ(s)dWs is defined and A(t) ∈ F(t) a

process of bounded variation. X(t) is called a semi-martingale w.r.t. F(t).

Definition 7.1. Let φ(t) ∈ F(t) be so that
∫ t
0
φ(s)γ(s)dWs and

∫ t
0
φ(s)dA(s) are

defined. Then we define∫ t

0

φ(s)dX(s) :=

∫ t

0

φ(s)γ(s)dWs+

∫ t

0

φ(s)dA(s).

It is important to note here that
∫ t
0
φ(s)γ(s)dWs is an Ito integral, which is not

defined path-wise (since W (t) has infinite variation) and
∫ t
0
φ(s)dA(s) is a Lebesgue-

Stieltjes integral, which is defined pathwise using the definition of Section 4.2.
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Example 7.2. (i) Let X(t) be a compensated compound Poisson process, i.e. X(t) =

Q(t) − λµt where Q(t) is a compound Poisson process. Let Sk be the jump times of

Q(t). Then ∫ t

0

φ(s)dX(s) =
∑
i

φ(Si)Yi1(Si≤t) −
∫ t

0

λµφ(s)ds.

(ii) Let X(t) = W (t) + J(t), where J(t) is a pure jump procress. Then∫ t

0

φ(s)dX(s) =

∫ t

0

φ(s)dWs+
∑
0<s≤t

φ(s)∆J(s).

We understand the term
∑

0<s≤t φ(s)∆J(s) as followed: for each event ω, let

0 < t1(ω) < t2(ω) < ... < tn(ω)(ω) ≤ t be the jump times of J(t). (The fact that

there are finitely many jumps in [0, t] and there is no jump at t = 0 come from the

definition of pure jump process). Also note that the number of jumps in 0, t], n(ω) is

random. Then∫ t

0

φ(s)dJ(s)(ω) =
∑
0<s≤t

φ(s)∆J(s) =

n(ω)∑
i=1

φ(ti)[J(ti)− J(ti−)](ω).

7.2 Martingale properties

Reading material Ocone’s Lecture note 1, section VII

Suppose we model our stock as

S(t) = σW (t) +X(t),

where W (t), X(t) ∈ F(t) are independent, W (t) is a Brownian motion and X(t) =

Q(t)− λµt is a compensated compound Poisson process. Then S(t) is a martingale.

It is important for us then that if we denote φ(t) as the number of shares of S we

hold at time t ,
∫ t
0
φ(r)dSr is a martingale. From Ito integration, we know that if

φ is an adapted process, then
∫ t
0
φ(s)dW (s) is a martingale. So it remains to ask if∫ t

0
φ(s)dX(s) is also a martingale. However, this is not always the case. See Shreve’s

examples 11.4.4 and 11.4.6.

A suffficient condition for the stochastic integral w.r.t. a jump process (that is

also a martingale) to be a martingale is that the integrand is left-continuous (and

of course adapted). This is stated in Shreve’s theorem 11.4.5. More generally, one
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can use a predictable integrand (a process that is the limit of a sequence of left-

continuous processes) and the stochastic integral w.r.t. a jump martingale will still

be a martingale.

In Shreve’s example 11.4.6, the following process is considered:

X(t) =

∫ t

0

1[0,S1](s)d(N(s)− λs)

=

∫ t

0

1[0,S1](s)dN(s)−
∫ t

0

1[0,S1](s)λds,

where S1 is the first jump time of N(t). Note that the integrand here is left continuous.

For t < S1, the integrand 1[0,S1](s) = 0. Thus X(t) = −λt.
For t = S1,

∫ t
0

1[0,S1](s)dN(s) = 1∆N(S1) = 1 while
∫ t
0

1[0,S1](s)λds = λS1. Thus

X(t) = 1− λS1.

For s > S1,1[0,S1](s) = 0 thus X(t) = 1− λS1, t ≥ S1.

We conclude that

X(t) = −λt1(t<S1) + (1− λS1)1(t≥S1)

= N(t ∧ S1)− λ(t ∧ S1).

Here we can use the fact that a stopped martingale is a martingale to conclude

that X(t) is a martingale since N(t) − λt is a martingale and the above formula

showed that X(t) is a stopped martingale.

Using a similar argument, we have

Y (t) =

∫ t

0

1[0,S1)(s)d(N(s)− λs) = −λ(t ∧ S1).

Heuristically, P(S1 > 0) = 1 therefore, for s < t,

P
(
− λ(t ∧ S1) ≤ −λ(s ∧ S1)

)
= 1;

P
(
− λ(t ∧ S1) < −λ(s ∧ S1)

)
> 0.

Therefore E(−λ(t ∧ S1)) < E(−λ(s ∧ S1)) and Y (t) is not a martingale. A rigorous

proof is provided in Shreve’s.

8 Ito’s formula for jump processes

Reading material: Ocone’s lecture 1 note section VIII, Shreve’s section 11.5
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8.1 Ito’s formula

The most general jump process we will consider in this chapter has the following form:

X(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),

where J(t) is a pure jump process. We also denote by Xc(t) the continuous part of

X, that is

Xc(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs.

Given a function f ∈ C2, we would like to obtain a formula for df(X(t)). We have

the following observations:

(i) If X(t) = Xc(t), i.e. if X has no jump then we have the classical Ito’s formula:

df(X(t)) = f ′(X(t))dXt+
1

2
f ′′(X(t))γ2(t)dt.

(ii) If X(t) = J(t), then f(X(t)) is also a pure jump process. Moreover,

f(X(t)) = f(X(0)) +
∑
0<s≤t

f(X(s))− f(X(s−)).

(iii) In general when X(t) = Xc(t) + J(t), intuitively we should have df(X(t))

following the classical Ito’s formula in between the jumps of X and ∆f(X(t)) =

f(X(t))− f(X(t−) at the jump points of X.

This leads to the following Ito’s formula (see Shreve’s theorem 11.5.1)

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))dXc(s) +

∫ t

0

1

2
f ′′(X(s))γ2(s)ds

+
∑
0<s≤t

f(X(s))− f(X(s−)).

9 Models of stock price with jumps

9.1 Stock models

Recall that before we model the dynamics of a stock S(t) as followed:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dWt.
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Also observe that the most important property of W (t) we used in pricing financial

models with S(t) is that it is a martingale. This motivates us to replace W (t) with

a general martingale with jumps. That is, we let

M(t) =

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),

where J(t) is a pure jump process be a martingale and consider the following model

for S(t):

S(t) = S(0) +

∫ t

0

µ(s)S(s−)ds+

∫ t

0

S(s−)dM(s). (1)

Intuitively, the reason we use S(s−) in the RHS is so that at the jump of M(t),

we have

S(t)− S(t−) = S(t−)∆J(t). (2)

If we think of ∆J(t) as representing an external shock, then this says the jump in the

stock price is its value immediately before the shock occurs multiply with the size of

the shock, which makes sense.

Mathematically, using S(s−) in the RHS has the benefit of guaranteeing
∫ t
0
S(s−)dM(s)

to be a martingale under proper conditions (see the discussion in Section 7.2). Either

way, it should be noted that we can equivalently write (1) as

S(t) = S(0) +

∫ t

0

(µ(s) + α(s))S(s)ds+

∫ t

0

S(s)γ(s)dW (s) +
∑
0<s≤t

S(s−)∆J(s). (3)

That is, we only use S(s−) in conjuction with the jumps in J(s).

Relation (5) has another important implication for the jumps of J(t):

S(t) = S(t−)(1 + ∆J(t)).

Since we want to use S(t) as a stock price, S(t) ≥ 0 implies we need to restrict

∆J(t) > −1.

Similar to the classical Black-Scholes model, we have an explicit formula for S(t)

satisfying (1) or (3):

S(t) = S(0) exp
[ ∫ t

0

[µ(s) + α(s)− 1

2

∫ t

0

γ2(s)]ds+

∫ t

0

γ(s)dWs
] ∏
0≤s<t

(1 + ∆J(s)). (4)
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Example 9.1. Geometric Poisson process: If we let M(t) = σ(N(t)− λt) then

S(t) = S(0) +

∫ t

0

S(s−)dMs = S(0)e−σλt
∏

0<s≤t

(1 + σ∆N(s)) = S(0)e−σλt(1 + σ)N(t),

since we observe that 1 + σ∆N(s) = 1 + σ at all jump points of N(t) and there are

exactly N(t) jumps at time t. Also note that since σ is the jump size of the pure jump

process σN(t), we require σ > −1 as in the discussion above.

9.2 Some general remarks

Let W (t) be a BM and N(t) be a Poisson process. Observe that

X1(t) = 1 +

∫ t

0

σX1(s)ds

X2(t) = 1 +

∫ t

0

σX2(s)dW (s)

X3(t) = 1 +

∫ t

0

σX3(s−)dN(s)

(note the X3(s−) in the last equation) have solutions

X1(t) = eσt

X2(t) = eσW (t)− 1
2
σ2t

X3(t) = (1 + σ)N(t),

where the solution for X1 follows from classical calculus, X2 from “classical” Ito’s

formula and X3 from the calculus for jump processes (see also the discussion about

Geometric Poisson process). The point to observe here is that three very similar

differential equations give three distinctly different answers depending on different

integrators.

Also observe that if we apply Ito’s formula for jump processes to the f(N(t)) =

(1 + σ)N(t), we get

X3(t) = f(N(t)) =
∑
s≤t

(1 + σ)N(s) − (1 + σ)N(s−). (5)

This at first glance does not look like the “differential” form

dX3(t) = σX3(t−)dN(t) (6)

X3(0) = 1.
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However, we observe from (5) that ∆X3(s) = (1+σ)N(s)−(1+σ)N(s−). Moreover,

at the jump point of N

∆X3(s) = (1 + σ)N(s) − (1 + σ)N(s−) = (1 + σ)N(s) − (1 + σ)N(s)−1

= σ(1 + σ)N(s)−1 = σX3(s−)

= σX3(s−)∆N(s).

Now the agreement between (5) and (6) are clear. The point here is that it is not

immediate to derive “differential” form from the explicit formula of a jump process.

Indeed such differential form is not always possible. The fact that N(t) is a counting

process (having jump of size 1) is central to the reason why the formula X3 is nice,

as well as that we could re-derive the differential form of X3(t) from its explicit

formula. Replacing N(t) with a general jump process (having arbitrary jump size) in

the differential equation for X3, and you will see that we no longer can easily derive

such nice formula anymore.
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